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INTRODUCTION



MOTIVATION

- Many research questions ask: “how does X vary over the life-cycle?”

- Typically want to understand some combination of income and wealth dynamics

- Many varied examples from recent research in Australia:
- Age, industry, and unemployment risk during lock-downs (Graham and Ozbilgin, 2021)
- Housing, landlords, and negative gearing (Cho, Li, Uren, 2023)
- Income contingent student loans and life-cycle income (Hua and Kudrna, 2023)
- Life-cycle earnings risk and insurance (Tin and Tran, 2023)
- Means-testing pension income (Kudrna, Tran, and Woodland, 2023)

- Where to start? Publicly available cross-section or panel data:
- Survey of Income and Housing (cross-section; Australia)
- HILDA (panel; Australia)
- Survey of Consumer Finances (cross-section; USA)
- PSID (panel; USA)


https://www.sciencedirect.com/science/article/pii/S0165188921001688
https://onlinelibrary.wiley.com/doi/full/10.1111/iere.12673
https://drive.google.com/file/d/1B4k3lrG3SuDV_u3c0CXrcDSzka68PLeQ/view
https://onlinelibrary.wiley.com/doi/full/10.1111/1475-4932.12723
https://www.sciencedirect.com/science/article/pii/S0014292121002415
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CODES AND TOOLBOXES FOR SOLVING HETEROGENEOUS AGENT MODELS

- In this lecture, build up the basics of life-cycle modeling techniques
- All codes and lecture slides available on my webpage

- But many other useful resources out there on the web:
- Robert Kirkby's VFI Toolkit: Solve everything on a grid!
- Chris Carroll's Econ-ARK: library of heterogeneous agent models
- Benjamin Moll's various codes: heterogeneous agent models in continuous time


https://www.jamesandrewgraham.com/code
https://www.vfitoolkit.com/
https://econ-ark.org/
https://benjaminmoll.com/codes/

A SIMPLE LIFE-CYCLE MODEL
SOLVED By HAND



A SIMPLE LIFE-CYCLE MODEL SOLVED BY HAND

- Let's start from a simple model that we can solve by hand

- Consider an individual household that maximizes life-time utility

- Chooses consumption and savings subject to life-time income

max logci + Blogc, + 52 log C3

C11C2,C0,002,03
st G+ a; =y + o
CQ+a3 =Y+ a(1+7)
Gg=ys+as(1+r)

- Life-cycle outcomes depend on income {y1,Y2,y3}, parameters {3}, and rates {r}



A SIMPLE LIFE-CYCLE MODEL SOLVED BY HAND

- Taking FOCs yields following consumption functions:

Y2 Y3
(GHF%JFHFr (1+r)2>

G

:
T+ B+ B
_ BO+n) % Y3

T 1+ 8+ (a1+yw+1+r+(1+r)2>

_ B+ V2 V3
A w7 G R A P Ry

2

- And the following savings functions:
B+ 5 V2 Y3
ey G A o oy ((1+r) Oy

2(1 1+
a3zy2+a2(1+r)—czzm(m-&-%-ﬁ-mfr))—1+Bf52(1)ﬁr)

G =y1—G=




MODEL LIFE-CYCLE PROFILES [CoDE: mod0®_analytical.m]
Life-cycle income
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SIMPLE NUMERICAL SOLUTIONS



SIMPLE NUMERICAL SOLUTIONS OF THE BENCHMARK MODEL

- Need to prepare ourselves to solve more complex models
- Prepare our model for numerical solution methods

- Re-cast our simple model as a Value Function Problem

Vj(a) = max log¢j + 8Vj41(0j11)

GG

st. GHap=y+a(1+7)

- Important objects:
- Vj(+): is the value function at age j
* Vjz(+): is the next-period value function
- a: assets are the current state variable for the problem
- aj;4q: assets chosen as the next-period state variable



NUMERICAL SOLUTION AND “LIFE ON THE GRID" [CoDE: mod1_assets.m]

* Note that we are now solving for sets of functions: {V;(a)};_,, {gjs1(a)}2_,, {¢(a)}i,
- Our functions defined on the asset space a € R
- But to solve on a computer/numerically, we discretize this space

- For example, set upper and lower bounds {a,--- ,a}, and a number of grid points Ng
Asset Grid Space

Asset value at grid
M)
:

0 5 10 15 20 25 9
Grid number



NUMERICAL SOLUTION AND “LIFE ON THE GRID"

- So now let’s force the whole problem onto our grid:

a

Vif{:| | =maxlog¢+ BVj+1(aj11)

J+1

of -

s3]

st. G=y+ ||+ —ax
a
Qj € {Q, e 76}
- Notice that value functions Vj(a), consumption functions cj(a), and asset choices

aj++(a) all live on the asset grid {a, - -- ,a}
- Since value function lives on the grid, Vj., is known for all choices a;4; € {a,--- ,a}



MODEL LIFE-CYCLE PROFILES [CoDE: mod1_assets.m]

- Start from the terminal value function:

V3(a) = log c3
st. Ga=ys+a(1+r)

12 il =d; Set final age

T4 aprime j(:,jj) = zeros(Na, 1); ng in last period of life

15 cons j(:,33) =y 1(33) + agrid.*(l+4r); hing in last period of life

76 v ilidd) = log{ cons_j{:,33) )i

18 Often want to ensure that V j is never

19 scale = -le+l0; 1egat

80 ‘u'_j{:,jj) = (cons_j (:,33)>0) .*‘u‘_j{:,jj) + (cons_j (:,33)<=0) .*scale;

g M



MODEL LIFE-CYCLE PROFILES modl_assets.m]

- Now solve model via backward iteration on the value function

91 % Auxilliary functions

9z util func = €(cons) log( cons );
: 5 Loop *back * through ages
J-1:-1:1

for 3

% ross each grid

7 O for aa = 1:Na

98 aprime = agrid; % Suppose savings choice comes from the asse

99 cons =y j(ij) + agrid(aa).*(1+r) - aprime; 35 Get consumption from the budget constraint
100 cons = (cons»0).*cons + (cons<=0).*le-10; t Trick te make sure consumption always positive
101
102 V_jplusl =V j( :, j3+l); % Get tomorrow's value function where aprime=current asset grid
103 V_ on agrid = util func(cons) + beta.*V jplusl; v Compute today's value function
104
105 % Find index on asset grid corresponding to maximum value fun n value
106 [~, 1x_max] = max(V_on_agrid);
107
108 % Get optimal functiens using position on asset grid with maximum value
109 aprime_j(aa,jj) = aprime(ix_max);
110 cons_j(aa, jj) = cons(ix max);
111 V_jlaa,]]) = V_on_aqrid(ix_max);
112 end 12

113 end



PoLIcy FUNCTIONS ACROSS THE ASSET GRID [CoDE: mod1_assets.m]

Value Function

5k




SIMULATED LIFE-CYCLE [CoDE: mod1_assets.m]

- Let's simulate a panel of households over the life-cycle

185 5 Init e r
1 sim assets = zeros (Npop, J);
sim_cons = zeros (Npep, J);

sim W

: Draw sample of initial

in period 1

“
=g

mua =0
sig a = 0.
sim asset

dist in peried 1

fart

2; 5 std dev
(:y1) =mu a + sig a.*randn(Npop,1};

[

t F. s onto grid
[~,ix_max] = min(abs(agrid-sim assets(:,1)'));
sim_assetst:,l) = agrid(ix_max):

for jj = 1:J
Loor rer each household
for nn=1:Npop
Get position in asset gr
ix max = (sim assets(nn,jj)==agrid);

Find choice of assets/consumption for each household at each grid point
sim assets(nn,jj+l) = aprime j(ix max,jj)s
sim cons{nn,jj) = cons_Jj(ix max,3j);
- - - 14




SIMULATED LIFE-CYCLE [CoDE: mod1_assets.m]

Life-cycle income

1.2
1
1 2 3
Life-cycle consumption
1.2
1 o— —o
0-8 Il I
1 2 3
Life-cycle assets
0.2 1
0;///__9_7________::::- —o
o == —e— Mean
—————— - = =Mean -/+ 1s.d.
-02F~-" ‘ ‘
1 2 3



SIMULATED DISTRIBUTIONS [CoDE: mod1_assets.m]

Distribution of Initial Assets

5000 -
0 1 ‘ . ‘
-1 -0.5 0 0.5 1
Distribution of consumption
10000 -
5000 - ‘ |
0 o ) |
0.6 0.8 1 1.2 1.4
g X 104 Distribution of assets
| ‘
0 I | | I | [ | I |
-1 -0.5 0 0.5 1



USEFUL COMPUTATIONAL METHODS



USEFUL COMPUTATIONAL METHODS: FUNCTION INTERPOLATION

- Rather than force every function onto the asset grid, want to allow evaluation of
functions off-grid i.e. between grid points in the state space

- Consider a value function on the grid:

1

- Want to evaluate function at a that lies between two asset grid points [ayy, ajity]
- Linear interpolation (i.e. weighted average of values at bounding grid points):

~ ajiqp — a a—arp
vj(@) = Vj(ay) x <M> + Vi(agy) x (m)

dpi+ — 4 dji+ — 4ap



USEFUL COMPUTATIONAL METHODS: FAST ASSET CHOICES

- Asset choices on the grid too slow:
- At every grid point in the state vector (a) (=N, grids)
- Need to test value function at every grid point: a1 € {ap, -+, Ay} (=N grids)
- Find maximum across the values at each grid point (=Ng x Ng test points)

- Fast and robust method: Golden Section Search
- Essentially, aim to bracket the maximum value between test points
- At every grid point in the state vector (a,y) (=NgNy grids)
- Need only evaluate value function at small number of test points
- Household can now choose assets freely: ap < aj1 < apj

- Use Matlab function: goldenx.m



USEFUL COMPUTATIONAL METHODS: INTERPOLATION+GOLDEN SECTION SEARCH

- Consider solving same model but with different numbers of grid points
- Compare speed: (1) model on grid, (2) interpolation+Golden Section Search

Number of grid points, Ng
100 1,000 10,000 50,000
Model on grid 0.005s 0.05s 1.5s 26.7s
Interpolation+GSS  0.013s  0.02s  0.05s 0.17s

19



PoLICY FUNCTIONS ACROSS THE ASSET GRID [CopE: mod2_interpolation.m]

- With more grid points (N, = 1000), solved policy functions are much smoother
Value Function

5L
Bt N e NN Rttt
0 | e e
..“‘ ---Agcj :2
-5 : ........... Age j=3
0 2 4 6 1
Asset grid
Consumption Function sset gri
10F T
5T ek
0 : ‘ ‘ ‘ | |
0 2 4 6 !
Asset grid
Asset Function sset gri
6
4
2
0 b

Asset gr11(9 20



SIMULATED DISTRIBUTIONS [CoDE: mod2_interpolation.m]

Distribution of Initial Assets

200
0 . |
-1 -0.5 0 0.5 1
Distribution of consumption
1000
500 +
0
0.7 0.8 0.9 1 1.1 1.2 1.3
Distribution of assets
10000 -
5000 +
O 1 1 |

21



EXTENDING NUMERICAL SOLUTIONS
TO MULTI-DIMENSIONAL GRIDS




NUMERICAL SOLUTION AND “LIFE ON GRID?”

- We can easily generalize the model to think about multi-dimensional grids

- For example, suppose we want to consider the possibility of different assets and
productivities (a, z)

- Consider second discretized space for productivity: {z,--- ,Z} with N, grid points

- Now need to create all possible combinations of (a,z)
- Asset grid points agj fori € 1,--- ,Ng
- Income grid points zyy fork € 1,--- ,N;

22



NUMERICAL SOLUTION AND “LIFE ON GRID?”

- Picture entire (a,z)-grid as combinations
- Note: “the asset grid moves faster than productivity grid”

[ap, 2]
app 2
Angs  2[]
anp 42
a7
g 7[2)
anp 2]
a2y

-G[Na]’ Z[Nz]-

23



NUMERICAL SOLUTION AND “LIFE ON THE GRID?”

- So the new problem on the grid would be:

ams 2
ap, 2
% . . = Taf log ¢j + BVj41(Qj41,2j41)
J+

AiNa]>  Z[Ny]
) an
n ap

st ¢G=yx [:] + F] (1+r)—aj+1

Z[ny] apn,]

- Require some kind of rule for determining next period productivity z4
- For now, suppose household believes constant income through time: zj;; =z

24



PoLICcY FUNCTIONS ACROSS THE GRIDSPACE

NONKO

Value’ age=— 1

panrassanasnnnsnrennset’ asnnpasnnnnses
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[CoDE: mod3_income.m]

Value, age:3
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o
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SIMULATED LIFE-CYCLE

- Again let's simulate a panel of households

- Let's hold initial assets constant at ag = 0

- But simulate productivity z; each period from a log-normal distribution
- Interpolate functions over assets and productivity

- Simulate 1000 households, compute statistics over the life-cycle

26



SIMULATED LIFE-CYCLE : 3_income.m]

Life-cycle income

1.5} _
- -
1 —o
1 2 3
Life-cycle consumption
1.4+
S0
1@ = ©

- = = Mean -/+ 1s.d.

1 2 3 27




ADDING MODEL INGREDIENTS:
EXPANDING OUR REPERTOIRE




COMMON MODEL INGREDIENTS

- Now consider mixing in more model ingredients
- Longer life + mortality risk
- Bequests
- Income uncertainty + Borrowing constraints
- Retirement

- Other extensions to consider...

- Education choices

- Occupation choices

- Health

- Investment activity

- Housing choices

- Migration

- Household formation

- Inter-generational interactions

28



LONGER LIFE AND MORTALITY RISK




LONGER LIFE AND MORTALITY RISK [CoDE: mod4_longerlife.m]

- Assume that households now live for J periods (e.g. / = 60)
- Assume “hump-shaped” profile of income y;
* Assume households die with ;, with increasing mortality risk with age

11 Life-cycle Income Life-cycle Mortality Risk
0.025
1
So o 0.02
= 0.9 =
= =
L ]
g S 0.015
o 0.8 =
g =
[<5) =
57 =
=
g 0.7 S 0.01
= (=8
0.6 0.005
0.5 . . , 0
20 20 ) 29

Age Age



LONGER LIFE AND MORTALITY RISK

- Modify our model:

Vi(a,z) = LD log ¢ + B(1 — m})Vj1(0j1, Z41) + Bmj x 0
JEAJEH N——
Future value given survival Future value following death

st. G+ap=y;xz+a(l+r)

- And where we now solve forj =[1,---,J]

30



SIMULATED LIFE-CYCLE : mod4_longerlife.m]

- = = Mean -/+ 2s.d.

20 30 40 50 60 70 80 3



SIMULATED DISTRIBUTIONS

x10*

x10*

Distribution of Income

2 4 6 8 10
Distribution of consumption

2 4 6 8
Distribution of assets

[CoDE: mod4_longerlife.m]

32



BEQUESTS




BEQUESTS

- Households also motivated by desire to provide for their children
- Several ways to model transfers of resources to children:

- Inter-vivos transfers: active choice of bequests in each period of life
- Bequests: passive transfer of remaining assets at death

- Bequests may be modelled to capture real world transfers at the end of life

- But more common to use bequests as mechanism to increase saving in old age

33



BEQUESTS

- Modify our model:

Vi(a,z) = 2B log ¢ + B(1 — m))Vj1(0j1, Z41) + BmW(aj1)

G50y

~———
Future value given survival Future value following death
st. G+ap=y;xz+a(l+r)
W(aj41) = ¢ log ajy4
- Bequests function W(a;11) captures utility of leaving wealth behind at death

- 1) captures strength of bequest motive

34



SIMULATED LIFE-CYCLE

== = NMean -/-+ 2g d

20 30 40 50 60 70 80 35




SIMULATED DISTRIBUTIONS [CopE: mod5_bequests.m]

<102 Distribution of Income

5 A

0 ! L ]
0 2 4 6 8 10
%104 Distribution of consumption

| A

0 w |
0 2 4 6 8

10 X 104 Distribution of assets
5L
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INCOME UNCERTAINTY+BORROWING
CONSTRAINTS




INCOME UNCERTAINTY+BORROWING CONSTRAINTS

- So far, households oblivious to uncertainty in their income
- Now, suppose households aware that productivity follows a stochastic process
- Most common to assume a Markov chain. Can be generated in many ways e.g.:
- Transitions between employment and unemployment
- Discretized AR(1) process (see Tauchen, 1986; Rouwenhorst, 1995)

- Markov chain details:
- Productivity can from a given set of values:

ZE {273227 e 7ZNZ}
- Probability transition matrix from z — zj4

N M2 N

Y21 72,2 T Y2,N,;
rz¢z/ = . .

Nzt UNz2 NN,
37



INCOME UNCERTAINTY+BORROWING CONSTRAINTS

- Drop mortality risk and bequests for ease of notation
- Update our problem to account for uncertainty
- Also incorporate an explicit borrowing constraint: aj,1 >=0

Vi(a,z) = max log ¢ + BE [Vj41(0j11,2j11) 1]

Gj>Qji

Conditional expected value
st. ¢+a=y;xz+a(l+r)

Zj+1 ~ I_z,z/

- [E characterizes expectations over evolution of z;; given the Markov chain

38



INCOME UNCERTAINTY+BORROWING CONSTRAINTS

- Using our state-space notation:

ap,  Zp . ai(ap,2m), 2
trans. prob. matrix
a7 —~~ ai(ap)s2m), 2w
% , . = max log ¢+ 3 x Q x Vit ) )
GrQjt
angs  Ziny) Aj1(apva)> Zing)s - 21y

:E[V/-H (GJ-M »Zj 41 ) IZ]

- The transition probability matrix Q is given by:

yiax Iy, 2 xIn, oo mn, X Iy,

Y20 X Ing 22 X Iy oo man, X Iy,
Q= I_z,z’ ® HNG = .

W X Ing w2 X Ing oo g, X Iy,

39



INCOME UNCERTAINTY+BORROWING CONSTRAINTS

- Tips and tricks:

- Note that Q is a very sparse matrix
- Use sparse matrix methods in computation: Q = kron(Gamma_z, speye(Na))
- Dramatically cut memory use and speed up computation!

- Pre-compute Q matrix just once, before iterating over the value function
- Saves costly computation steps!

- Interpolate over the expected future value function, E[V.]
- Expected value function is a smooth object, easier to approximate (i.e. interpolate over)
than the underlying value function itself

- After solving household problem, need to draw from the Markov chain to simulate
household productivity

40



SIMULATED LIFE-CYCLE [CoDE: mod6_incomeandconst

Life-cycle income

41



SIMULATED DISTRIBUTIONS [CoDE: mod6_incomeandconstraint.m]

< 10° Distribution of income

5L

0

0.5 1 1.5
<104 Distribution of consumption

5L

0 1 1 1
0 0.5 1 1.5 2 2.5 3

- =< 10° Distribution of assets

0 L L L L 1




RETIREMENT




RETIREMENT

- So far, households earn deterministic life-cycle income + stochastic labour market
income

- Now we want to account for retirement

- Many ways to do this, some more realistic than others
- Exogenous retirement date + simple retirement income

- Exogenous retirement date + accumulated retirement savings (e.g. superannuation)
- Endogenous choice of retirement date

43



RETIREMENT 1:
EXOGENOUS RETIREMENT




EXOGENOUS RETIREMENT + FIXED RETIREMENT INCOME

- Suppose all households receive a constant old-age pension, wyet
Vi(a,z) = max log ¢; + BE; [Viy1(aj11,241)12]
S0~
st. ¢ +a=mi(z)+a(1+r)
Gjy1 =0
Zipq ~ Tz

i Xz it) < Jret
m; = .
](Z) { Wret |f] > Jret

- Note: model code has age-dependent expectations, since productivity stops evolving
during retirement

4



SIMULATED LIFE-CYCLE [CoDE: 7_exogretirement.m]

Life-cycle income

45



SIMULATED DISTRIBUTIONS [CoDE: mod7_exogretirement.m]

5 X 10° Distribution of income
0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
%104 Distribution of consumption
10 -
5L
O L L L I
0 1 2 3 4 5
5 X 10° Distribution of assets
o Mo . ‘ ‘ ‘ ‘

0 5 10 15 20 25 30
46



RETIREMENT 2:
EXOGENOUS RETIREMENT +
SUPERANNUATION ACCOUNTS




EXOGENOUS RETIREMENT + RETIREMENT ACCOUNT

- Add new state variable k to track retirement account
- Fixed contribution rate 7 out of working life income
- Fixed draw-down rate x during retirement

Vj(av i?a Z) = max |Og Cj + 6Ej [\/j+1(aj+17 [’?j+1,Zj+1)‘Z]

¢0j1
st. ¢ +a=mi(k2z)+a(1+r)
Qjyq > 0
Zipg ~ Ty

(M=7)xyjxz ifj<Jet
m;(k,2) {Wret+n(1+r)l? ifj > Jret

ki

_{k(1+r)+wy,-xz i) < Jret
J+1

(1=r)(O+0k it ) > Jret

47



SIMULATED LIFE-CYCLE [CoDE: mod8_retirementassets.m]

Life-cycle income Life-cycle assets

20 40 60 80
Life-cycle Ret. Account Life-cycle Networth
10 ¢ » 10} —e—Mean PR
= = = Mean -/+ 14N
5L
0

20 40 60 80 48



< 1@istribution of income

0 0.5 1 1.5
6 < IPgstribution of ret. assets
4
2
0 | "—
0 5 10 15

SIMULATED DISTRIBUTIONS [CoDE: mod8_retirementassets.m]

4 X 10Pistribution of assets

0] 5 10 15

g X H19istribution of networth



RETIREMENT 3:
ENDOGENOUS RETIREMENT




ENDOGENOUS RETIREMENT (VIA DISCRETE CHOICE PROBLEM)

- Household problem when retired is:
R _ , R (g
Vi(a,2) = c,,rg)iéo log ¢; + BV}14(0j31,2)

st. G+ap=w+a(l+r)

- Household problem when working is:

- future choice of work vs. retire
work disutility

N N
\/jW(a,z): max log¢; —x +8 E \/j+1(aj+1,zj+1)\z}

Gj,0j4120

st. G+a =y xz+a(l+r)
Zipy1~ Tz
- While working, household makes discrete choice over working and retirement
Vi(a,z) = max{\/}W(a,z), \/f(a,z)}

50



SIMULATED LIFE-CYCLE [CODE: mod9_retirementassets.m]

Life-cycle income 1 Fraction Working
0.5+
0
20 40 60 80
Life-cycle assets
6 —e—Mean -
- = = Mean -/+ 1sd. \\
’

51



SIMULATED DISTRIBUTIONS [CODE: mod9_retirementassets.m]

, % 10° Distribution of income

0 I
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

%104 Distribution of consumption

| l

0 1 L |
0 0.5 1 1.5 2 2.5 3

s %105 Distribution of assets

0 I s s ‘ |
0 5 10 15 20 25



CONCLUSION




CONCLUSION

- Heterogeneous agent life-cycle models an incredibly useful tool for macro research
- Useful for any and all questions addressing life-cycle economics
- The models are easily extended

- Models are typically very stable - useful for code development, model calibration,
and research experiments

- Plenty of examples and code out there ready to try!

53
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