"Fundamentals of Heterogeneous Agent Models" Examples from Household Life-Cycle Models

James Graham (University of Sydney) Continuing Education in Macroeconometrics Workshop 8 November, 2023

INTRODUCTION

MOTIVATION

- Many research questions ask: "how does X vary over the life-cycle?"
- Typically want to understand some combination of income and wealth dynamics
- Many varied examples from recent research in Australia:
 - Age, industry, and unemployment risk during lock-downs (Graham and Ozbilgin, 2021)
 - Housing, landlords, and negative gearing (Cho, Li, Uren, 2023)
 - Income contingent student loans and life-cycle income (Hua and Kudrna, 2023)
 - Life-cycle earnings risk and insurance (Tin and Tran, 2023)
 - Means-testing pension income (Kudrna, Tran, and Woodland, 2023)
- Where to start? Publicly available cross-section or panel data:
 - Survey of Income and Housing (cross-section; Australia)
 - HILDA (panel; Australia)
 - Survey of Consumer Finances (cross-section; USA)
 - PSID (panel; USA)

SURVEY OF INCOME AND HOUSING (AUSTRALIA)

2

SURVEY OF CONSUMER FINANCES (USA)

3

- In this lecture, build up the basics of life-cycle modeling techniques
 - All codes and lecture slides available on my webpage
- But many other useful resources out there on the web:
 - Robert Kirkby's VFI Toolkit: Solve everything on a grid!
 - Chris Carroll's **Econ-ARK**: library of heterogeneous agent models
 - Benjamin Moll's various codes: heterogeneous agent models in continuous time

A SIMPLE LIFE-CYCLE MODEL Solved By Hand

- Let's start from a simple model that we can solve by hand
- · Consider an individual household that maximizes life-time utility
- Chooses consumption and savings subject to life-time income

$$\max_{c_1, c_2, c_3, a_2, a_3} \log c_1 + \beta \log c_2 + \beta^2 \log c_3$$

s.t. $c_1 + a_2 = y_1 + a_1$
 $c_2 + a_3 = y_2 + a_2(1+r)$
 $c_3 = y_3 + a_3(1+r)$

• Life-cycle outcomes depend on income $\{y_1, y_2, y_3\}$, parameters $\{\beta\}$, and rates $\{r\}$

A SIMPLE LIFE-CYCLE MODEL SOLVED BY HAND

• Taking FOCs yields following consumption functions:

$$c_{1} = \frac{1}{1+\beta+\beta^{2}} \left(a_{1} + y_{1} + \frac{y_{2}}{1+r} + \frac{y_{3}}{(1+r)^{2}} \right)$$

$$c_{2} = \frac{\beta(1+r)}{1+\beta+\beta^{2}} \left(a_{1} + y_{1} + \frac{y_{2}}{1+r} + \frac{y_{3}}{(1+r)^{2}} \right)$$

$$c_{3} = \frac{\beta^{2}(1+r)^{2}}{1+\beta+\beta^{2}} \left(a_{1} + y_{1} + \frac{y_{2}}{1+r} + \frac{y_{3}}{(1+r)^{2}} \right)$$

• And the following savings functions:

$$a_{2} = y_{1} - c_{1} = \frac{\beta + \beta^{2}}{1 + \beta + \beta^{2}} (a_{1} + y_{1}) - \frac{1}{1 + \beta + \beta^{2}} \left(\frac{y_{2}}{(1 + r)} + \frac{y_{3}}{(1 + r)^{2}} \right)$$
$$a_{3} = y_{2} + a_{2}(1 + r) - c_{2} = \frac{\beta^{2}(1 + r)}{1 + \beta + \beta^{2}} \left(a_{1} + y_{1} + \frac{y_{2}}{(1 + r)} \right) - \frac{1 + \beta}{1 + \beta + \beta^{2}} \frac{y_{3}}{(1 + r)}$$

MODEL LIFE-CYCLE PROFILES

[CODE: mod0_analytical.m]

- 7

SIMPLE NUMERICAL SOLUTIONS

SIMPLE NUMERICAL SOLUTIONS OF THE BENCHMARK MODEL

- Need to prepare ourselves to solve more complex models
- Prepare our model for numerical solution methods
- Re-cast our simple model as a Value Function Problem

$$V_j(a) = \max_{c_j, a_{j+1}} \log c_j + \beta V_{j+1}(a_{j+1})$$

s.t. $c_j + a_{j+1} = y_j + a(1+r)$

- Important objects:
 - $V_j(\cdot)$: is the value function at age j
 - $V_{j+1}(\cdot)$: is the **next-period value function**
 - a: assets are the current state variable for the problem
 - a_{j+1} : assets chosen as the **next-period state variable**

NUMERICAL SOLUTION AND "LIFE ON THE GRID"

[CODE: mod1_assets.m]

- Note that we are now solving for sets of functions: $\{V_j(a)\}_{j=1}^3, \{a_{j+1}(a)\}_{j=1}^2, \{c_j(a)\}_{j=1}^3$
- + Our functions defined on the asset space $a \in \mathcal{R}$
- But to solve on a computer/numerically, we **discretize** this space
- For example, set upper and lower bounds $\{\underline{a}, \cdots, \overline{a}\}$, and a number of grid points N_a

9

NUMERICAL SOLUTION AND "LIFE ON THE GRID"

• So now let's force the whole problem onto our grid:

$$V_{j}\left(\begin{bmatrix}\underline{a}\\\vdots\\\overline{a}\end{bmatrix}\right) = \max_{a_{j+1}} \log c_{j} + \beta V_{j+1}(a_{j+1})$$

s.t. $c_{j} = y_{j} + \begin{bmatrix}\underline{a}\\\vdots\\\overline{a}\end{bmatrix}(1+r) - a_{j+1}$
 $a_{j+1} \in \{\underline{a}, \cdots, \overline{a}\}$

- Notice that value functions $V_j(a)$, consumption functions $c_j(a)$, and asset choices $a_{j+1}(a)$ all live on the asset grid $\{\underline{a}, \dots, \overline{a}\}$
- Since value function lives on the grid, V_{j+1} is known for all choices $a_{j+1} \in \{\underline{a}, \dots, \overline{a}\}$

• Start from the **terminal value function**:

$$V_3(a) = \log c_3$$

s.t. $c_3 = y_3 + a(1 + r)$

68	8			
69	<pre>%% 1. Solve final period of life first: j = J</pre>			
70	9 ₀			
71				
72	jj = J; % Set final age			
73				
74	aprime_j(:,jj) = zeros(Na, 1); % No saving in last period of life			
75	<pre>cons_j(:,jj) = y_j(jj) + agrid.*(1+r); % Consume everything in last period of life</pre>			
76	<pre>V_j(:,jj) = log(cons_j(:,jj)); % Utility over consumption</pre>			
77				
78	% Often want to ensure that V_j is never -inf or nan.			
79	<pre>scale = -1e+10; % Very large negative number</pre>			
80	<pre>V_j(:,jj) = (cons_j(:,jj)>0).*V_j(:,jj) + (cons_j(:,jj)<=0).*scale;</pre>			
81				
0.0				

Model Life-Cycle Profiles

[CODE: mod1_assets.m]

• Now solve model via backward iteration on the value function

```
91
        % Auxilliarv functions
 92
        util func = @(cons) log( cons );
93
94
        % Loop *backwards* through ages
95
        for ii = J-1:-1:1
96
            % Loop across each asset grid
97
            for aa = 1:Na
98
                aprime
                           = agrid;
                                                                  % Suppose savings choice comes from the asset grid
99
                cons = y j(jj) + agrid(aa).*(1+r) - aprime; % Get consumption from the budget constraint
                           = (cons>0).*cons + (cons<=0).*1e-10; % Trick to make sure consumption always positive
                cons
                V jplus1 = V j(:, jj+1); % Get tomorrow's value function where aprime=current asset grid
                V on agrid = util func(cons) + beta.*V jplus1; % Compute today's value function
104
                % Find index on asset grid corresponding to maximum value function value
                [~, ix max] = max(V on agrid);
108
                % Get optimal functions using position on asset grid with maximum value
                aprime j(aa, jj) = aprime(ix max);
                cons j(aa, jj) = cons(ix max);
                V j(aa,jj) = V on agrid(ix max);
            end
         end
```

Policy Functions Across the Asset Grid

[CODE: mod1_assets.m]

SIMULATED LIFE-CYCLE

[CODE: mod1_assets.m]

• Let's simulate a panel of households over the life-cycle

```
185
         % Initialize sim vectors
186
         sim assets = zeros(Npop, J);
187
         sim cons = zeros(Npop, J);
188
189
         % Draw sample of initial assets
         mu a = 0; % Mean of asset dist in period 1
191
         sig a = 0.2; % std dev of asset dist in period 1
192
         sim assets(:,1) = mu a + sig a.*randn(Npop,1);
193
194
         % Force assets onto grid
195
         [~,ix max] = min(abs(agrid-sim assets(:,1)'));
196
         sim assets(:,1) = agrid(ix max);
197
198
         % Simulate panel one age group at a time
199
         for ii = 1:J
             % Loop over each household
             for nn=1:Npop
                 % Get position in asset grid
                 ix max = (sim assets(nn,jj)==agrid);
204
                 % Find choice of assets/consumption for each household at each grid point
                 sim_assets(nn,jj+1) = aprime_j(ix_max,jj);
                 sim cons(nn,jj) = cons j(ix max,jj);
             end
         end
```

14

SIMULATED LIFE-CYCLE

[CODE: mod1_assets.m]

SIMULATED DISTRIBUTIONS

[CODE: mod1_assets.m]

Useful Computational Methods

USEFUL COMPUTATIONAL METHODS: FUNCTION INTERPOLATION

- Rather than force every function onto the asset grid, want to allow evaluation of functions off-grid i.e. between grid points in the state space
- Consider a value function on the grid:

$$V_j\left(\begin{bmatrix}\underline{a}\\\vdots\\\overline{a}\end{bmatrix}\right)$$

- Want to evaluate function at \tilde{a} that lies between two asset grid points $[a_{[i]}, a_{[i+1]}]$
- Linear interpolation (i.e. weighted average of values at bounding grid points):

$$V_{j}(\tilde{a}) = V_{j}(a_{[i]}) \times \left(\frac{a_{[i+1]} - \tilde{a}}{a_{[i+1]} - a_{[i]}}\right) + V_{j}(a_{[i+1]}) \times \left(\frac{\tilde{a} - a_{[i]}}{a_{[i+1]} - a_{[i]}}\right)$$

- $\cdot\,$ Asset choices on the grid too slow:
 - At every grid point in the state vector (a) (= N_a grids)
 - Need to test value function at every grid point: $a_{j+1} \in \{a_{[1]}, \dots, a_{[N_a]}\}$ (= N_a grids)
 - Find maximum across the values at each grid point (= $N_a \times N_a$ test points)
- Fast and robust method: Golden Section Search
 - Essentially, aim to bracket the maximum value between test points
 - At every grid point in the state vector (a, y) (= $N_a N_y$ grids)
 - Need only evaluate value function at small number of test points
 - Household can now choose assets freely: $a_{[1]} \leq a_{j+1} \leq a_{[N_a]}$
- Use Matlab function: goldenx.m

- Consider solving same model but with different numbers of grid points
- Compare speed: (1) model on grid, (2) interpolation+Golden Section Search

	Number of grid points, <i>N</i> a			
	100	1,000	10,000	50,000
Model on grid	0.005s	0.05s	1.5s	26.7s
Interpolation+GSS	0.013s	0.02s	0.05s	0.17s

POLICY FUNCTIONS ACROSS THE ASSET GRID [CODE: mod2_interpolation.m]

• With more grid points ($N_a = 1000$), solved policy functions are much smoother

SIMULATED DISTRIBUTIONS

[CODE: mod2_interpolation.m]

EXTENDING NUMERICAL SOLUTIONS TO MULTI-DIMENSIONAL GRIDS

- \cdot We can easily generalize the model to think about multi-dimensional grids
- For example, suppose we want to consider the possibility of different assets and productivities (*a*, *z*)
- Consider second **discretized space** for productivity: $\{\underline{z}, \dots, \overline{z}\}$ with N_z grid points
- Now need to create all possible combinations of (a, z)
 - Asset grid points $a_{[i]}$ for $i \in 1, \cdots, N_a$
 - Income grid points $z_{[k]}$ for $k \in 1, \cdots, N_z$

NUMERICAL SOLUTION AND "LIFE ON GRID²"

- Picture entire (a, z)-grid as combinations
 Note: "the asset grid moves faster than productivity grid"

-	_
a _[1] ,	Z[1]
a _[2] ,	Z[1]
:	:
· ·	•
$a_{[N_a]},$	Z[1]
a _[1] ,	Z[2]
a _[2] ,	Z[2]
:	:
· ·	•
$a_{[N_a]},$	Z[2]
	:
$a_{[1]},$	$Z_{[N_Z]}$
a _[2] ,	$Z_{[N_Z]}$
:	:
$\lfloor a_{[N_a]},$	$Z_{[N_z]}$

NUMERICAL SOLUTION AND "LIFE ON THE GRID²"

• So the new problem on the grid would be:

$$\mathcal{V}_{j} \left(\begin{bmatrix} a_{[1]}, & z_{[1]} \\ a_{[2]}, & z_{[1]} \\ \vdots & \vdots \\ a_{[N_{o}]}, & z_{[N_{y}]} \end{bmatrix} \right) = \max_{a_{j+1}} \log c_{j} + \beta V_{j+1}(a_{j+1}, z_{j+1})$$

s.t. $c_{j} = y_{j} \times \begin{bmatrix} z_{[1]} \\ z_{[1]} \\ \vdots \\ z_{[N_{y}]} \end{bmatrix} + \begin{bmatrix} a_{[1]} \\ a_{[2]} \\ \vdots \\ a_{[N_{o}]} \end{bmatrix} (1+r) - a_{j+1}$

- Require some kind of rule for determining next period productivity z_{j+1}
- For now, suppose household believes constant income through time: $z_{j+1} = z$

POLICY FUNCTIONS ACROSS THE GRIDSPACE

[CODE: mod3_income.m]

- Again let's simulate a panel of households
- Let's hold initial assets constant at $a_0 = 0$
- But simulate productivity z_i each period from a log-normal distribution
- Interpolate functions over assets and productivity
- Simulate 1000 households, compute statistics over the life-cycle

SIMULATED LIFE-CYCLE

[CODE: mod3_income.m]

Adding Model Ingredients: Expanding our Repertoire

COMMON MODEL INGREDIENTS

- Now consider mixing in more model ingredients
 - Longer life + mortality risk
 - Bequests
 - Income uncertainty + Borrowing constraints
 - \cdot Retirement
- Other extensions to consider...
 - Education choices
 - Occupation choices
 - Health
 - Investment activity
 - Housing choices
 - Migration
 - Household formation
 - Inter-generational interactions

LONGER LIFE AND MORTALITY RISK

LONGER LIFE AND MORTALITY RISK

- Assume that households now live for J periods (e.g. J = 60)
- Assume "hump-shaped" profile of income y_i
- Assume households die with π_j , with increasing mortality risk with age

• Modify our model:

$$V_{j}(a, z) = \max_{c_{j}, a_{j+1}} \log c_{j} + \underbrace{\beta(1 - \pi_{j})V_{j+1}(a_{j+1}, z_{j+1})}_{\text{Future value given survival}} + \underbrace{\beta\pi_{j} \times 0}_{\text{Future value following death}}$$
s.t. $c_{j} + a_{j+1} = y_{j} \times z + a(1 + r)$

• And where we now solve for $j = [1, \cdots, J]$

SIMULATED LIFE-CYCLE

[CODE: mod4_longerlife.m]

31

SIMULATED DISTRIBUTIONS

[CODE: mod4_longerlife.m]

BEQUESTS

- · Households also motivated by desire to provide for their children
- · Several ways to model transfers of resources to children:
 - · Inter-vivos transfers: active choice of bequests in each period of life
 - Bequests: passive transfer of remaining assets at death
- Bequests may be modelled to capture real world transfers at the end of life
- But more common to use bequests as mechanism to increase saving in old age

• Modify our model:

$$V_{j}(a, z) = \max_{c_{j}, a_{j+1}} \log c_{j} + \underbrace{\beta(1 - \pi_{j})V_{j+1}(a_{j+1}, z_{j+1})}_{\text{Future value given survival}} + \underbrace{\beta\pi_{j}W(a_{j+1})}_{\text{Future value following death}}$$
s.t. $c_{j} + a_{j+1} = y_{j} \times z + a(1 + r)$
 $W(a_{j+1}) = \psi \log a_{j+1}$

- Bequests function $W(a_{j+1})$ captures utility of leaving wealth behind at death
- + ψ captures strength of bequest motive

SIMULATED LIFE-CYCLE

[CODE: mod5_bequests.m]

35

SIMULATED DISTRIBUTIONS

[CODE: mod5_bequests.m]

Income Uncertainty+Borrowing Constraints

Income Uncertainty+Borrowing Constraints

- · So far, households oblivious to uncertainty in their income
- Now, suppose households *aware* that productivity follows a stochastic process
- Most common to assume a Markov chain. Can be generated in many ways e.g.:
 - Transitions between employment and unemployment
 - Discretized AR(1) process (see Tauchen, 1986; Rouwenhorst, 1995)
- Markov chain details:
 - Productivity can from a given set of values:

$$z\in\{z_1,z_2,\cdots,z_{N_Z}\}$$

• Probability transition matrix from $z \rightarrow z_{j+1}$

$$\Gamma_{z,z'} = \begin{bmatrix} \gamma_{1,1} & \gamma_{1,2} & \cdots & \gamma_{1,N_z} \\ \gamma_{2,1} & \gamma_{2,2} & \cdots & \gamma_{2,N_z} \\ \vdots & & \vdots \\ \gamma_{N_z,1} & \gamma_{N_z,2} & \cdots & \gamma_{N_z,N_z} \end{bmatrix}$$

INCOME UNCERTAINTY+BORROWING CONSTRAINTS

- Drop mortality risk and bequests for ease of notation
- Update our problem to account for uncertainty
- Also incorporate an explicit borrowing constraint: $a_{j+1} >= 0$

$$\begin{split} & log c_j + \beta \underbrace{\mathbb{E}\left[V_{j+1}(a_{j+1}, z_{j+1})|z\right]}_{\text{Conditional expected value}} \\ \text{s.t.} \quad & c_j + a_{j+1} = y_j \times z + a(1+r) \\ & a_{j+1} \ge 0 \\ & z_{j+1} \sim \Gamma_{z,z'} \end{split}$$

• \mathbb{E} characterizes expectations over evolution of z_{j+1} given the Markov chain

INCOME UNCERTAINTY+BORROWING CONSTRAINTS

• Using our state-space notation:

$$V_{j}\left(\begin{bmatrix}a_{[1]}, & z_{[1]}\\a_{[2]}, & z_{[1]}\\\vdots & \vdots\\a_{[N_{a}]}, & z_{[N_{y}]}\end{bmatrix}\right) = \max_{c_{j}, a_{j+1}} \log c_{j} + \beta \times \underbrace{Q}_{Q} \times V_{j+1}\left(\begin{bmatrix}a_{j+1}(a_{[1]}, z_{[1]}), & z_{[1]}\\a_{j+1}(a_{[2]}, z_{[1]}), & z_{[1]}\\\vdots & \vdots\\a_{j+1}(a_{[N_{a}]}, z_{[N_{y}]}), & z_{[N_{y}]}\end{bmatrix}\right) = \mathbb{E}[V_{j+1}(a_{[N_{a}]}, z_{[N_{y}]}), z_{[N_{y}]}]$$

• The transition probability matrix *Q* is given by:

$$Q = \Gamma_{z,z'} \otimes \mathbb{I}_{N_a} = \begin{bmatrix} \gamma_{1,1} \times \mathbb{I}_{N_a} & \gamma_{1,2} \times \mathbb{I}_{N_a} & \cdots & \gamma_{1,N_z} \times \mathbb{I}_{N_a} \\ \gamma_{2,1} \times \mathbb{I}_{N_a} & \gamma_{2,2} \times \mathbb{I}_{N_a} & \cdots & \gamma_{2,N_z} \times \mathbb{I}_{N_a} \\ \vdots & & \vdots \\ \gamma_{N_z,1} \times \mathbb{I}_{N_a} & \gamma_{N_z,2} \times \mathbb{I}_{N_a} & \cdots & \gamma_{N_z,N_z} \times \mathbb{I}_{N_a} \end{bmatrix}$$

INCOME UNCERTAINTY+BORROWING CONSTRAINTS

- Tips and tricks:
 - Note that *Q* is a very **sparse matrix**
 - Use sparse matrix methods in computation: Q = kron(Gamma_z, speye(Na))
 - Dramatically cut memory use and speed up computation!
 - Pre-compute Q matrix just once, before iterating over the value function
 - Saves costly computation steps!
 - Interpolate over the expected future value function, $\mathbb{E}[V_{j+1}]$
 - Expected value function is a smooth object, easier to approximate (i.e. interpolate over) than the underlying value function itself
 - After solving household problem, need to draw from the Markov chain to simulate household productivity

SIMULATED LIFE-CYCLE

[CODE: mod6_incomeandconstraint.m]

Life-cycle income

SIMULATED DISTRIBUTIONS

[CODE: mod6_incomeandconstraint.m]

42

RETIREMENT

- So far, households earn deterministic life-cycle income + stochastic labour market income
- Now we want to account for retirement
- Many ways to do this, some more realistic than others
 - Exogenous retirement date + simple retirement income
 - Exogenous retirement date + accumulated retirement savings (e.g. superannuation)
 - Endogenous choice of retirement date

RETIREMENT 1: EXOGENOUS RETIREMENT \cdot Suppose all households receive a constant old-age pension, ω_{ret}

$$V_{j}(a, z) = \max_{c_{j}, a_{j+1}} \log c_{j} + \beta \mathbb{E}_{j} \left[V_{j+1}(a_{j+1}, z_{j+1}) | z \right]$$

s.t. $c_{j} + a_{j+1} = m_{j}(z) + a(1 + r)$
 $a_{j+1} \ge 0$
 $z_{j+1} \sim \Gamma_{z,z'}$
 $m_{j}(z) = \begin{cases} y_{j} \times z & \text{if } j \le J_{ret} \\ \omega_{ret} & \text{if } j > J_{ret} \end{cases}$

• Note: model code has age-dependent expectations, since productivity stops evolving during retirement

[CODE: mod7_exogretirement.m]

SIMULATED DISTRIBUTIONS

[CODE: mod7_exogretirement.m]

RETIREMENT 2: EXOGENOUS RETIREMENT + SUPERANNUATION ACCOUNTS

EXOGENOUS RETIREMENT + RETIREMENT ACCOUNT

- Add new state variable k to track retirement account
- + Fixed contribution rate au out of working life income
- + Fixed draw-down rate κ during retirement

$$V_{j}(a, k, z) = \max_{c_{j}, a_{j+1}} \log c_{j} + \beta \mathbb{E}_{j} \left[V_{j+1}(a_{j+1}, k_{j+1}, z_{j+1}) | z \right]$$

s.t. $c_{j} + a_{j+1} = m_{j}(k, z) + a(1 + r)$
 $a_{j+1} \ge 0$
 $z_{j+1} \sim \Gamma_{z, z'}$
 $m_{j}(k, z) = \begin{cases} (1 - \tau) \times y_{j} \times z & \text{if } j \le J_{ret} \\ \omega_{ret} + \kappa(1 + r)k & \text{if } j > J_{ret} \end{cases}$
 $k_{j+1} = \begin{cases} k(1 + r) + \tau \times y_{j} \times z & \text{if } j \le J_{ret} \\ (1 - \kappa)(1 + r)k & \text{if } j > J_{ret} \end{cases}$

SIMULATED LIFE-CYCLE

[Code: mod8_retirementassets.m]

SIMULATED DISTRIBUTIONS

[Code: mod8_retirementassets.m]

RETIREMENT 3: ENDOGENOUS RETIREMENT

ENDOGENOUS RETIREMENT (VIA DISCRETE CHOICE PROBLEM)

• Household problem when **retired** is:

$$V_j^R(a, z) = \max_{c_j, a_{j+1} \ge 0} \log c_j + \beta V_{j+1}^R(a_{j+1}, z)$$

s.t. $c_j + a_{j+1} = \omega + a(1+r)$

• Household problem when **working** is:

$$V_{j}^{W}(a,z) = \max_{c_{j},a_{j+1} \ge 0} \log c_{j} \underbrace{-\chi}_{-\chi}^{\text{work disutility}} + \beta \underbrace{\mathbb{E}\left[\tilde{V}_{j+1}(a_{j+1},z_{j+1})|z\right]}_{\mathbb{E}\left[1,z_{j+1}\right]}^{\text{ruture choice of work vs. retire}}$$

s.t. $c_{j} + a_{j+1} = y_{j} \times z + a(1+r)$
 $z_{j+1} \sim \Gamma_{z,z'}$

• While working, household makes discrete choice over working and retirement

$$\tilde{V}_j(a,z) = \max\left\{V_j^W(a,z), V_j^R(a,z)\right\}$$

SIMULATED LIFE-CYCLE

[CODE: mod9_retirementassets.m]

SIMULATED DISTRIBUTIONS

[Code: mod9_retirementassets.m]

CONCLUSION

- · Heterogeneous agent life-cycle models an incredibly useful tool for macro research
- Useful for any and all questions addressing life-cycle economics
- The models are easily extended
- Models are typically very stable useful for code development, model calibration, and research experiments
- Plenty of examples and code out there ready to try!